
Multi-Application Inter-Tile Synchronization on
Ultra-High-Resolution Display Walls

Sungwon Nam1, Sachin Deshpande2, Venkatram Vishwanath3, Byungil Jeong4,
Luc Renambot1, Jason Leigh1

1 Electronic Visualization Laboratory

842 W. Taylor St.
Chicago, IL 60607

snam5, luc, spiff@evl.uic.edu

2 Sharp Laboratories of America
5750 NW Pacific Rim Blvd.

Camas, WA 98607

sdeshpande@sharplabs.com

3 Argonne National Laboratory
9700 S. Cass Ave.
Argonne, IL 60439

venkatv@mcs.anl.gov

4 Texas Advanced Computing Center
10100 Burnet Rd Bldg 196

Austin TX 78758

bijeong@tacc.utexas.edu

ABSTRACT
Ultra-high-resolution tiled display walls are typically driven by a
cluster of computers. Each computer may drive one or more
displays. Synchronization between the computers is necessary to
ensure that animated imagery displayed on the wall appears
seamless. Most tiled display middleware systems are designed
around the assumption that only a single application instance is
running in the tiled display at a time, therefore synchronization
can be achieved with a simple solution such as a networked
barrier. When a tiled display has to support multiple applications
at the same time, the simple networked barrier approach does
not scale. In this paper we propose and experimentally validate
two synchronization algorithms to achieve low-latency inter-tile
synchronization for multiple applications with independently
varying frame-rates. The Two-Phase algorithm is more generally
applicable to various high-resolution tiled display systems. The
One-Phase algorithm provides superior results but requires the
support for NTP, and is more CPU-intensive.

Categories and Subject Descriptor
I.3.2 [Computer Graphics]: Graphics Systems –
Distributed/network graphics; C.2.4 [Computer-
Communication Networks]: Distributed Systems –
Client/server; D.4.1 [Operating Systems]: Process
Management – Synchronization

Keywords
Frame synchronization, Tiled-display, Cluster computing

1. Introduction
Ultra-high-resolution display walls are fast becoming a standard
tool for scientific research. These types of displays are the only
means by which scientists can see the massive data generated
from their instruments and supercomputer simulations. With the

advent of low-cost LCDs, researchers are now using tiled
display walls as “mash up” environments where they can
juxtapose a variety of data so that they can look at them as a
whole [16]. While similar to the notion of Project Rooms or War
Rooms of the past, a key difference is that for large-scale and
collaborative scientific research, there is no other way to look at
this magnitude of data. These projects routinely deal with time-
varying data on the order of terabytes to petabytes. It is
impossible to manage this information by printing out static
diagrams on sheets of paper and pinning them to a wall as has
been the traditional approach. The microscopes and telescopes
used by scientists today are no longer simple optical
instruments, but are integrated with complex computing systems
that perform noise filtering, tiling, and feature detection. Ultra-
high-resolution displays are becoming the new lenses that bring
the data from these instruments into focus. To meet this
challenge, the Electronic Visualization Laboratory at University
of Illinois at Chicago has been conducting research with Sharp
Labs of America on scalable display wall hardware and
software. The culmination of this work is LambdaVision, a 100-
Megapixel LCD wall, and the Scalable Adaptive Graphics
Environment (SAGE) [16], a middleware system for driving
such walls. Figure 1 shows the LambdaVision driven by SAGE
that is used for the weekly meeting at Electronic Visualization
Laboratory.

LambdaVision is an array of 55 LCD panels that are driven by a
cluster of 28 computers. The computers cooperate to give the
users the illusion of a seamless display environment. Therefore,
precise coordination and synchronization between the computers
are necessary to ensure that animated images that are displayed
on the wall appear seamless. The Scalable Adaptive Graphics
Environment (SAGE) has been developed for this purpose [31].
Unlike other tiled display middleware such as Chromium [15] or
Equalizer [11], SAGE is designed at the outset to manage
multiple images or animations from different applications at the
same time enabling users to simultaneously access, stream, and
juxtapose them on ultra-high-resolution tiled display walls.
The need to support multiple applications at the same time poses
a significant challenge for image synchronization. Traditional

frame synchronization mechanisms used in systems such as
Chromium or Equalizer do not scale due to increased message
complexity when it is used in a system that is designed to
support multiple applications simultaneously. In this paper, we
propose and validate two new algorithms: a Two-Phase and a
One-Phase frame synchronization algorithm to achieve low-
latency inter-tile synchronization for multiple applications with
varying frame-rates. The two algorithms achieve the same goal
but differ in resource utilization and complexity. A key
contribution of this paper is proposing a scalable way to achieve
frame synchronization among display nodes in a tiled display
wall that can support multiple applications simultaneously.

Figure 1. The SAGE in action. A student presenting at
the weekly meeting in Electronic Visualization
Laboratory.

In the sections below, we will discuss in greater detail, the
synchronization requirements of ultra-high-resolution
environments and related work. Next, we present background
information about the SAGE. We will also detail the limitations
of applying traditional synchronization approaches to SAGE and
how our new algorithms provide significant improvements.

2. Related Work
The traditional model for driving tiled display walls is to use the
entire surface to display a single visualization in exquisite
resolution. However, as display walls began to grow in size and
resolution, users found it more useful to be able to use the
expansive screen estate and resolution for not simply displaying
a single visualization, but multiples simultaneously so that they
can compare them side by side [5, 9, 30, 32]. Middleware
systems that fall under the former category include WireGL
[14], Chromium [15], DMX [3], Equalizer [11], and CGLX [1].
In WireGL and its successor Chromium, one or more servers
convert data from unmodified applications into OpenGL
graphics primitives, which are then streamed to clients driving
the tiled-display wall. CGLX does not distribute graphics
primitives but runs the same copies of the OpenGL-based
application on all clients and replicates the data on all the
clients. Equalizer offers a hybrid approach where the user can
combine various rendering techniques. DMX (Distributed
Multihead X Project) provides an X Window System compatible
environment where multiple displays connected to multiple
machines are presented as a single unified screen. In DMX, a
master node distributes X Window primitives on a tiled display.

All of these approaches assume that a single application
occupies the entire wall at any given instant. Rendering of the
content is often conducted directly on the graphics cards that are
connected to the displays. This has the advantage that it enables
low-latency generation and manipulation of the images. And the
frame synchronization among display nodes can be achieved
easily by implementing a networked barrier at the point that
needs to be synchronized. A networked barrier works by having
all display nodes send a message to a barrier server node, and
wait while the barrier server counts the number of messages it
has received. When all the messages have been received the
barrier server broadcasts acknowledgements to every display
node, which upon receipt unblocks the display nodes. The
synchronization barrier can be implemented in several ways. In
cluster computing, the Message Passing Interface (MPI) [2] is
the de-facto communication mechanism among the nodes. MPI
supports a barrier among all its communication nodes. This
ensures that all progress is blocked until all the processes
running on the nodes enter what is called a “barrier”. This
approach is sufficient to ensure frame synchronization for single
applications occupying an entire tiled display.

Total image synchronization across displays in a tiled-display
wall is best achieved through a combination of hardware and
software solutions and is required for the display of stereoscopic
images [24]. In terms of hardware, the synchronization of
vertical refresh across multiple graphics cards can be achieved
using specialized genlock hardware that is built into advanced
graphics cards such as those found in Nvidia’s Quadro series
[21-23]. Alternatively, Jeremie et al. [17] presented a cost-
effective approach using custom hardware and parallel port for
distributing vertical refresh synchronization signals. This can be
used with any graphics hardware. Combined with software
synchronization methods presented in many papers, these can
provide cost-effective solution for total frame synchronization
between display nodes.

Chen et al. [7] discussed three different communication methods
for cluster-based high-resolution display system in their paper.
These are synchronized execution model where all render nodes
have the same copy of the application instance (e.g. CGLX),
primitive distribution model where a client distributes graphics
primitives to render servers (e.g. Chromium), and pixel
distribution model where a client renders and transmits only
pixels to display servers. A synchronization barrier at a certain
program execution point (such as before graphics buffer swap)
can be directly used to ensure frame synchronization in the
synchronized execution model, such as in [4, 7, 12, 33, 35]. In
the primitive distribution model, which can also be considered
as a centralized model in that only a single node that has
application instance distributes graphics primitives or pixels to
server nodes that render and display, the frame synchronization
can be achieved implicitly leaving small asynchronies between
display nodes [25], or a synchronization barrier can be used
explicitly such as in [11, 14, 15, 20] for tighter frame
synchronization. SAGE can be categorized as parallel pixel
distribution model since multiple clients (applications) send
pixels to multiple display servers (display nodes). In the earlier
generations of SAGE, we implemented a frame synchronization
scheme to support multiple applications by using multiple
synchronization barriers (a barrier per application). However,
this per-application based synchronization scheme was unable to
provide the tight synchronization tolerances expected by display

manufacturers such as Sharp. Our new approaches provide
significant improvements.

3. Frame Synchronization Requirements of
a Tiled Display Walls
To display a continuous image on a tiled display, all the tiles
that constitute an application window need to be synchronously
updated. This is especially important for interactive
visualizations and animations.

There are three requirements for seamless frame synchronization
on tiled displays:

1. Data synchronization: the application data to be displayed
must be coherent i.e. the various display nodes must
display parts of the same frame. For multiple applications,
data synchronization must be achieved for each application
being displayed.

2. Swap buffer synchronization: the display thread on each
node should swap the contents of the graphics buffer
synchronously in order for the various application windows
to appear consistent on the display.

3. Synchronization of the vertical refresh cycles of the various
displays (gen-lock): the physical refresh of monitors on
each node should occur synchronously.

Perfect frame synchronization on tiled displays is achieved by
satisfying all three requirements. In this paper we will focus on
all but the third requirement which can normally be achieved
through the use of specialized hardware.

 In the case of dedicated tiled display walls that are limited to
running only a single application at a time, data and swap buffer
synchronization can be ensured easily with a single
synchronization barrier. [4, 8, 12-15, 19, 20, 24, 26, 28, 29, 35]

However, the problem we are attempting to solve is more
challenging because tiled display walls can have an arbitrary
number of different application windows in which frame updates
occur at different rates. If a frame synchronization method for
tiled display system that runs single application is applied, it
becomes per-application based synchronization which is not
scalable due to excessive synchronization messages over
network generated for each frame from each application. Also
with per-application-based synchronization, it is difficult to
obtain swap buffer synchronization across display nodes
because each application sends frames at different rates. This
can cause the events (data and swap buffer synchronizations) of
the same application to become partially ordered on a cluster,
that can lead to unsynchronized display of frames. For multiple
applications to be displayed seamlessly on a tiled display wall,
total ordering of data and swap buffer synchronization across all
applications is required. The total ordering of events in a
distributed system is described in detail in [18].

In Section 5, we will propose two scalable frame algorithms that
ensure total ordering of data synchronization of all applications
and swap buffer synchronization between display nodes with
minimal impact on applications’ frame rate and latency.

4. Scalable Adaptive Graphics Environment
(SAGE)
SAGE is a cross-platform middleware system for driving ultra-
resolution tiled displays. Unlike other approaches, such as
Chromium, SAGE delegates the rendering of graphics to
remotely located compute clusters, and relies on the use of high
speed networks to stream the pixels of the visualization to the
displays. This “thin-client” model has the advantage that large
cluster farms or supercomputers can be brought to bear to render

Figure 2. In SAGE, while a compute cluster drives the individual displays it merely acts as a light-weight client which receives
pixels from remote rendering resources such as visualization clusters or supercomputers.

datasets that may be too large to fit on an individual graphics
card [34]. In SAGE, a single window displayed on a wall may
be driven by any number of display nodes, and multiple
windows can be displayed on the wall simultaneously. As
windows are moved from one portion of the wall to another,
SAGE seamlessly reroutes the pixels to a different set of
computers driving the display tiles so that handling of the
windows on the display is totally transparent from the
application. The SAGE model is shown in Figure 2.

4.1 Architecture
In SAGE, each application gives its rendered pixels to the
SAGE Application Interface Library (SAIL) that streams them
to the appropriate display nodes depending on the current
position and size of the window on the display. Each display
node can receive and display multiple pixel streams
independently to allow multiple applications to be shown
concurrently on the tiled display. The Free Space Manager
(FSManager) is the main component of SAGE that keeps track
of the current display parameters and the arrangement of the
application pixels on the display. Based on the requested
arrangement, the FSManager directs SAIL to distribute an
application’s pixels to the appropriate display nodes. The
applications can be dynamically moved and resized with the
help of the UI client. SAGE consists of following main
components:

 SAGE Application Interface Library (SAIL) enables an
application to stream pixel data onto the display wall.

 The application pixel streams are received by the
SAGE Application Receiver threads (APP).

 Each node has a Node Display Manager (NDM)
responsible displaying the contents of all applications
on the display.

 Using the SAGE UI, a user can launch, resize, and
move application windows on the tiled-display.

The Free Space Manager (FSManager) co-ordinates the various
components. An example of SAGE session that runs on four
display nodes and displays two applications is depicted in Figure
3.

Figure 3. The SAGE Components. It shows an
example of four display nodes running two
applications, App1 and App2 each distributed on tile
0, 1, and 2 and tile 1, 2, and 3 respectively.

4.2 SAGE’s Frame Synchronization
Algorithm
In this section we will discuss the limitations of SAGE’s former
frame synchronization method. We employed a dynamic
networked barrier per application for data synchronization. By
handling multiple barriers at a time, we achieved data
synchronization in SAGE [16].

A synchronization group (SyncGroup) which consists of a set of
display nodes that shows an application’s image is maintained
for each application. Members (display nodes) in the group can
be dynamically changed as a user moves or resizes an
application window. And a data synchronization manager
thread, which ensures synchronized frame update of display
nodes in the SyncGroup, is created for each synchronization
group. A dynamic SyncGroup and data synchronization manager
thread pair implements a dynamic barrier for each application.
An example of data synchronization manager and
synchronization group pairs in SAGE is shown in Figure 4.

Figure 4. An example of four display nodes (tiles)
displaying two applications. There is a data sync manager
and SyncGroup pair for each application.

Table 1. The number of messages that need to be
exchanged in SAGE in a single round with its former

synchronization algorithm to display application data on
the tiled-display.

 Number of Messages

Application
Frame
Updates

M * N

(Each application on a node sends a message
to its sync master.)

For M applications running on a display
driven by N nodes, we have the worst case of
M*N messages for frame updates.

Data Sync
Messages

The worst case of M*N messages from data
synch manager

Total
messages
per round

(M*N) + (M*N) = 2*M*N

Although this can achieve the data synchronization of multiple
applications, this method requires excessive messages because it
has a separate data synchronization manager for each
application. Table 1 shows the worst-case message complexity
when a tiled display consists of N display nodes displaying M
applications. We also did not implement swap buffer
synchronization explicitly. Since graphics swap buffer at each
node can be performed as soon as data synchronization is
finished, swap buffer synchronization can be achieved
implicitly. Although this implicit swap buffer synchronization
can be enough for supporting single application at a time [25], it
may incur non-trivial synchronization jitter when it handles
multiple applications because of the difference in CPU load and
scheduling across display nodes. As the number of applications
increases, the variance of the swap buffer completion time
across all display nodes increases. Figure 5 illustrates implicit
swap buffer synchronization that may result in incoherent frame
display.

Figure 5. The effect of lacking swap buffer
synchronization. The tile node 1 executed swap buffer
right after updating to frame N, but the tile node 0 did not
due to its CPU load and scheduling. This uncertain delay
may increase as the number of applications on the tile 0
increases. This incurs frame synchronization jitter.

5. The Proposed Algorithms
In our approach, data synchronization is achieved by a single
global synchronization master instead of a separate data
synchronization manager for each application. We present two
approaches in this paper – the Two-Phase algorithm and the
One-Phase algorithm.

In both algorithms, the global synchronization manager provides
data synchronization. Whereas the two-phase algorithm achieves
swap buffer synchronization with a network barrier after the
data synchronization phase, the one-phase algorithm uses NTP
synchronized clocks on each node. The consequence of this is
that the Two-Phase algorithm is more generally applicable to a
variety of high-resolution tiled display systems, whereas the
One-Phase approach yields higher synchronization accuracy but

has a limited range of target systems since it requires the support
for NTP and is more CPU-intensive.

5.1 Two-Phase Algorithm
This approach consists of two distinct phases;

1. the first phase achieves data synchronization for all
applications, and

2. the second phase synchronizes the swap-buffer events of
the all display node.

Figure 6 depicts the Two-Phase synchronization algorithm. In
this case, we have a single global synchronization master (SYNC
MASTER). Upon receiving a new frame at a display node, a
corresponding application receiver on a display node sends a
message with the new frame number and the node ID of the
application receiver to the SYNC MASTER. The SYNC MASTER
has an interval timer that runs at a periodic rate called Sync
Refresh Rate (SRR). The SRR must be a rate greater than the
highest frame rate of all the applications in order to refresh all
the applications at their desired rate. When the timer expires, the
SYNC MASTER computes the highest common frame number
for each application on all the nodes. After computing the
highest common frame for each application, the SYNC MASTER
sends a broadcast message to the NDM on each node. This
message contains a list of the highest common frame number for
each application. The NDM on each node uses this list in order
to display the appropriate frame for each application. This
concludes the first phase which achieves data synchronization.

Table 2. The number of messages that need to be

exchanged in SAGE in a single round with the Two-Phase
algorithm to display application frames on the Tiled-

Display.

 Number of Messages

Application Frame
Updates

M * N

(Each application on a node sends a
message to the SYNC MASTER.)

For M applications running on a
display driven by N nodes, we have
M*N messages for frame updates.

Phase 1: Data Sync
Messages

N
(The SYNC MASTER sends a message
to an NDM on all the N nodes.)

Phase 2: Swap
Buffer Sync 2N

2a. Barrier msg
from each NDM to
the Barrier Master

N

2b. Broadcast msg
from the Master to
all NDM’s

N

Total Messages
per round (M*N) + N + 2N = (M+3)* N

Figure 6. The Two-Phase synchronization algorithm to achieve seamless display of multiple applications on a tiled-display wall.
The first phase ensures data synchronization, and the second phase ensures swap buffer synchronization using networked
barrier.

Figure 7. The Ones-Phase synchronization algorithm to achieve seamless display of multiple applications on a tiled-display
wall. The first phase ensures data synchronization, and the synchronized swap buffer is ensured by making each node wait
until Presentation Time instead of using centralized networked barrier at the SYNC MASTER.

Upon finishing the first phase, the NDM on each node enters the
second phase in order to synchronize their swap buffer event.
This is achieved by placing a networked barrier right after frame
buffer drawing and just before frame buffer swap in the NDM.
This enables swap buffer synchronization with each NDM
displaying multiple applications on the tiled-display wall. Table
2 depicts the number of messages needed per round with the
Two-Phase algorithm where M is the number of applications
and N is the number of nodes driving the display wall. The Two-
Phase method uses (M-3) * N messages less than the former
SAGE frame synchronization algorithm per round.

The key differences between the Two-Phase and the former
SAGE frame synchronization algorithm are:

1. The prior version of SAGE has a data synchronization
manager for each application while the Two-Phase
algorithm has a single data synchronization manager
responsible for all the applications. This drastically reduces
the number of messages needed to reach data
synchronization per round.

2. The prior approach does not achieve swap buffer
synchronization explicitly, whereas the Two-Phase
algorithm uses a networked barrier to ensure swap buffer
synchronization.

5.2 One-Phase Algorithm
In the One-Phase approach, we achieve both data and swap
buffer synchronization in a single phase. We avoid the 2nd phase
in the Two-Phase approach by synchronizing the clocks of the
nodes driving the tiled-display. The Network Time Protocol
(NTP), a common component in most major operating systems
including Linux, helps synchronize the clocks on the cluster
nodes.

Table 3. The number of messages that need to be
exchanged in SAGE in a single round with the One-Phase
algorithm to display application data on the Tiled-Display.

 Number of Messages

Application
Frame Updates

M * N

(Each application on a node sends a
message to the SYNC MASTER.)

For M applications running on a display
driven by N nodes, we have M*N messages
for frame updates.

Phase 1: Data
Sync Messages

N
(The SYNC MASTER sends a message to an
NDM on all the N nodes. The Presentation
Time is embedded in the message.)

Total
Messages per
round

(M*N) + N = (M+1) * N

The data synchronization procedure is identical to the 1st phase
of the Two-Phase approach. A new term introduced in the
algorithm is the Presentation Time (PT) that informs each
NDM of the time when they should swap their buffer contents.

After computing the highest common frame for each
application, the SYNC MASTER computes PT by adding a
Presentation Time Offset (PTO) to the current time. The SYNC
MASTER sends a broadcast message to each NDM. This
message contains the Presentation Time and a list of the highest
common frame number for each application. Each NDM waits
till the Presentation time and then displays the appropriate frame
for each application according to the highest common frame
number list. This procedure achieves both data and swap buffer
synchronization.

The Presentation Time Offset (PTO) depends on a number of
factors including the computational load on each node, the
message delivery time, and the maximum frame rate of all
applications. PTO can be either fixed to a constant large value or
computed dynamically by the SYNC MASTER based on periodic
feedback from the various clients. In our prototype, we chose
fixed value empirically.
The trade-off of the One-Phase algorithm against Two-Phase
algorithm is lower synchronization jitter in return for higher
CPU usage due to the implementation limit. However, due to
unpredictable nature of user interaction, network status, and
computational load at each node, it is hard to determine proper
PTO for each frame (for each round) adaptively at the SYNC
MASTER.

6. Experiments
In this section, we evaluate the efficacy of the Two-Phase and
One-Phase approach and compare them with the prior SAGE
synchronization algorithm. We evaluate how the two new
algorithms scale with respect to the number of applications,
number of nodes, and the frame rate of applications. In Figure 9
through 13, “old sage” refers to the prior version of SAGE that
does not use the enhanced synchronization methods. In the case
of the One-Phase approach, the wait period till the Presentation
Time is implemented using high-resolution hardware counters.

The testbed consists of a 28-node cluster driving an 11x5 tiled
display wall. The cluster nodes are each equipped with 64-bit
dual processor 2.4Ghz AMD Opterons with 4GB RAM, Nvidia
Quadro 3000 Graphics Card in an AGP slot, and a dedicated
1GigE network interface card (NIC). The cluster nodes run
Linux kernel 2.6. The nodes are interconnected via a CISCO
3750 switch with 96Gbps bisection bandwidth. A software-
based NTP server is run on the master node and a NTP client is
run on each cluster node to synchronize the clocks. The NTP
protocol has an accuracy of 100 microseconds.

For the test application, we use several 1K (approximately
1000x1000 pixel) animations stored on a high-end dual-
processor dual-core AMD Opteron node which is equipped with
8GB RAM and is connected to the 28-node cluster over a
10gigabit network via a 10G Neterion NIC.

We use the difference in the swap buffer completion time among
the various nodes as a metric to evaluate inter-tile frame
synchronization. Figure 8 depicts the swap buffer completion
time that is defined as the time difference between the earliest
and the latest swap buffer completion times among all nodes for
a particular refresh cycle. A large difference indicates the tiles
are out-of-synch. In the case of video-playback, which is our
main concern in this paper, the simultaneous frame transition
across display nodes should occur in several millisecond [25].

Since the clocks are synchronized using NTP, the swap buffer
completion time is measured by time-stamping the swap buffer
completion events on each node.

We will show our experiments on the inter-tile swap buffer
completion time differences for a single application in the
Section 6.1 and for multiple applications in the Section 6.2. In
Sections 6.3 and 6.4, we will show the effect of the
synchronization method on the frame rates of a single and
multiple applications. The scalability with respect to the number
of display nodes is shown in the Section 6.5. In the Section 6.6,
we compare the average CPU usage of the NDM of the Two-
Phase and the One-Phase algorithms.

Figure 8. The method to compute the difference in the
swap buffer completion time at each frame among four
display nodes.

6.1 Inter-Tile Swap Buffer Completion Time
Difference (Out-of-Sync Time) for a Single
Application
A single test application was run on the entire display at 30
frames per second. The SYNC MASTER Refresh Rate (SRR) was
set to 60Hz and the presentation time offset (PTO) for the One-
Phase method was configured to 9 ms. Figure 9 depicts the swap
buffer completion time variance observed for 1000 consecutive
frames. As seen in the figure, the difference in the completion
time of swap buffer among the various nodes in the prior
approach is around 12-14 ms which caused the viewers to
visually perceive tearing in the application image on the display
wall. The Two-Phase algorithm achieves around 2 ms - A 6-fold
improvement over the prior approach. The One-Phase algorithm
achieves around 0.15 ms - a 10-fold improvement over the Two-
Phase and up to 90-fold improvement over the prior approach.
The relatively high variance in “old sage” is due to lacking swap
buffer synchronization (i.e. the second phase of the Two-Phase
algorithm) in NDMs. This showed the need for swap buffer
synchronization even for the case of single application. The
swap buffer completion time variance in the Two-Phase
algorithm was higher than that of the One-Phase algorithm
because of the barrier latency in the second phase of the Two-
Phase algorithm. However, both the Two-Phase and One-Phase

algorithms achieve inter-tile frame synchronization and exhibit a
visually seamless display across the wall.

Figure 9. A comparison of the swap buffer completion time
differences. The graph shows that the proposed
synchronization algorithms achieve extremely low swap
buffer variance in comparison to the prior frame
synchronization method in SAGE - which in turn results in
better inter-tile frame synchronization. The high variance in
the prior method is mainly due to lacking swap buffer
synchronization.

6.2 Inter-Tile Swap Buffer Completion Time
Difference (Out-of-Sync Time) with
Increasing Number of Applications

Figure 10. Average of maximum swap buffer completion
time difference of multiple applications. The graph shows
the algorithm scales as the number of applications is
increased.

In this experiment, we increased the number of applications
streaming to the display wall and evaluate the impact of the
synchronization mechanisms on the inter-tile swap buffer

completion time. The SYNC MASTER Refresh Rate (SRR) was
set to 60Hz and the Presentation Time Offset (PTO) for the One-
Phase algorithm was fixed at 9 ms. The test application is a 1K
animation remotely streamed at 30fps.

The results indicated that the prior approach, per-application
synchronization, failed to sustain acceptable synchronization
jitter with increasing number of applications, whereas both the
Two-Phase and the One-Phase algorithms ensured tight frame
synchronization despite of increasing number of applications.
This was due to the single global synchronization master for all
applications. Though minor increments of the swap buffer
completion time difference were incurred by the increased
system overhead on the display nodes as we increase the number
of applications, this result still satisfied very tight frame
synchronization tolerance.

6.3 Evaluation on an Application’s Frame
Rate

Figure 11. Comparison of the synchronization algorithms
on the application frame rate as we scale the frame rate of a
single application. The Two-Phase as well as the One-Phase
algorithms scale with an application’s frame rate.

3D stereoscopic tiled display walls including the Varrier [27]
and StarCAVE [10] are used for interactive and immersive
stereo visualizations. Such applications require support for a
high frame rate up to 120 fps to achieve interactivity [6]. A
frame synchronization scheme for these applications must be
able to achieve tight synchronization with minimal impact on
the application’s frame rate. Though the current prototypes of
these systems are designed for a single application, we expect
the future extension for multiple applications. Thus, we
evaluated the performance of the synchronization algorithms as
we scaled the frame rate of a 1K animation displayed across the
entire 28-node tiled display wall. In each case, the SYNC
MASTER Refresh Interval was set 10Hz higher than the
application rate and the Presentation Time Offset (PTO) for the
One-Phase was set to 6ms. Figure 11 depicts the effect of the
synchronization algorithms on the frame rate of the animation as
we increased the target frame rate of the animation from 30fps

to 120fps. From the figure, we observed that the two new
algorithms were able to sustain the target frame rate with
minimal deviation. The prior algorithm sustained the target
frame rate till 60fps but failed to sustain it at 120fps.

6.4 Aggregate Frame Rate with Increasing
Number of Applications

Figure 12. Comparison of the synchronization algorithms on
the aggregate application frame rate as we increased the
number of applications each runs at 30 frames per second.
The Two-Phase and One-Phase methods scaled with the
number of applications while the old SAGE synchronization
algorithm showed its limited scalability.

In addition to being able to sustain high frame rates, a good
synchronization mechanism should be able to sustain the frame
rates as increasing number of applications are launched on a
tiled display wall. In this experiment, we increase the number of
applications streaming to the display wall and evaluate the
impact of the synchronization mechanisms on the aggregate
achievable frame rate. Again, each application streams a 1K
animation at 30fps. From Figure 12, we observed that the
synchronization mechanisms of the previous version SAGE
(“old sage”) was only able to sustain the frame rate for up to
four applications and showed a 25% drop for eight applications.
As indicated in Section 4, this is due to the fact that the per-
application based data synchronization mechanism requires
excessive synchronization messaging. In contrast, both the Two-
Phase and the One-Phase algorithms are able to scale as the
number of applications increases.

6.5 Scalability Analysis with Increasing
Number of Nodes
Another key requirement of a good synchronization mechanism
is the ability to scale with the number of display nodes. Figure
13 depicts the inter-tile swap buffer completion time differences
as we increased the number of display nodes and the associated
tiled-display size. In the case of the Two-Phase algorithm, we
observed minor increments in the inter-tile swap buffer
completion time difference as we scaled the number of nodes.
This was primarily an effect of the networked swap buffer

barrier employed in the 2nd phase: as the number of nodes
increased the time to broadcast all the messages increased and
incurred additional lag. However, the 2 ms difference was too
short for a user to notice any asynchrony between tiles. The
One-Phase algorithm achieved the tightest synchronization
(~0.02 milliseconds), primarily due to the synchronized clocks
and use of high-resolution hardware timers for displaying the
frame as close as possible to the presentation time. Again, the
two new algorithms showed much more improved scalability
than the prior approach in this test.

Figure 13. The graph shows scalability of the algorithms as
the number of display nodes increases. The swap buffer
completion time difference in the Two Phase algorithm
slightly increases due to swap buffer synchronization phase
using a networked barrier, whereas the effect of the display
node increase is minimal in the One Phase algorithm.

6.6 Comparison of Average CPU Utilizations
of the Two-Phase and the One-Phase
Synchronization Algorithms
We discuss the differences in resource utilizations of the Two-
Phase and the One-Phase algorithm in this section. In the One-
Phase algorithm, each display node enters into busy waiting
loop, waits until the presentation time, and then executes
graphics swap buffer. This achieves a synchronized swap buffer
across display nodes and eliminates 2N network messages where
N is the size of the cluster (total N number of display nodes).
Thus, the One-Phase algorithm reduces message complexity at a
cost of more CPU cycles than the Two-Phase algorithm due to
the wait-loop. Therefore, when a tiled display is driven by a
cluster of thin-client computers that do not have enough CPU
resource for the wait-loop, or computationally intensive
processes need to run on the tiled display cluster, the One-Phase
algorithm should be avoided. In this experiment, we evaluated
CPU usages of the NDM when a 1K animation was displayed on
the display wall. The One-Phase algorithm used 20% of CPU
time, whereas the Two-Phase algorithm used only 4%.

7. Discussion
The Presentation Time Offset (PTO) of the One-Phase algorithm
has been set manually in the current implementation. PTO has to
be carefully chosen otherwise it can fail swap buffer
synchronization or cause unnecessary busy waiting. If it is set
too small, a synchronization message can arrive at a display
node behind the Presentation Time (PT). Or a node can
complete the frame buffer drawing behind PT. The swap buffer
synchronization fails in these cases. If it is set too long, then
extra busy waiting can occur at a display node resulting in
wasted CPU cycles. An example of small PTO is shown in
Figure 15. The NDM3’s graphics swap buffer is not
synchronized because the synchronization message arrives at the
NDM3 behind PT. To adaptively determine PTO for each frame
at the SYNC MASTER can resolve the problems described above.
However, to make PTO adaptive is challenging due to the
uncertainty in the system load on the cluster.

Figure 15. The effect of small PTO. The Presentation
Time(PT) calculated from the Presentation Time
Offset(PTO) was passed when the synchronization
message is received at NDM3. Graphics swap buffer at
NDM3 cannot be synchronized with swap buffer on other
display nodes.

The two algorithms we have presented assume that frames are
delivered reliably- i.e. the image frame data must not be lost or
dropped in any of the display nodes. Therefore, the current
prototypes are not applicable to the case where an application
may use UDP for streaming- this is a subject of future
investigation.

8. Conclusion
We presented the Two-Phase and the One-Phase algorithms to
achieve a seamless display of multiple applications on a high-
resolution tiled display wall driven by a cluster of computers.
Whether one would choose to utilize the One-Phase versus Two-
Phase algorithm depends on the desired synchronization
accuracy and the availability of system resources. The Two-
Phase algorithm has the advantage that it is more generic and
can therefore be easily applied to most high–resolution tiled

display systems including the ones driven by networked thin
clients. It provides high synchronization accuracy generally
acceptable for interactive high-resolution visualization. The
One-Phase algorithm provides superior synchronization
characteristics due to its low degree of messaging complexity.
However, the One-Phase algorithm requires support for NTP
and sophisticated display thread scheduling (which is currently
implemented via a busy-wait loop). Hence, if very tight
synchronization is required and NTP and additional unused
processing cores are available, one should opt to use the One-
Phase algorithm. Both methods, however, will scale with respect
to the number of applications, the frame rates of the
applications, and the number of cluster nodes.

9. Acknowledgements
This work was supported in part by the Office of Advanced
Scientific Computing Research, Office of Science U.S.
Department of Energy, under Contract No. DE-AC02-
06CH11357. This project was also funded in part by National
Science Foundation Award: OCI 0943559.

10. References
[1] Cross-Platform Cluster Graphics Library (CGLX),
http://vis.ucsd.edu/~cglx/
[2] Message Passing Interface, http://www.mpi-
forum.org/
[3] Xdmx, http://dmx.sourceforge.net
[4] J. Allard, V. Gouranton, L. Lecointre, E. Melin, and B.
Raffin, "Net Juggler: running VR Juggler with multiple displays
on a commodity component cluster," In Virtual Reality, 2002.
Proceedings. IEEE, vol., no., pp.273-274, 2002.
[5] R. Ball, and C. North: "Analysis of User Behavior on
High-Resolution Tiled Displays," Human-Computer Interaction,
INTERACT 2005, pp.350-363, 2005.
[6] C.-N. Carolina, J. S. Daniel, and A. D. Thomas:
"Surround-screen projection-based virtual reality: the design and
implementation of the CAVE," Proceedings of the 20th annual
conference on Computer graphics and interactive techniques,
1993.
[7] H. Chen, Y. Chen, A. Finkelstein, T. Funkhouser, K.
Li, Z. Liu, R. Samanta, and G. Wallace: "Data distribution
strategies for high-resolution displays", Computers & Graphics,
vol.25, no.5, pp.811-818, 2001.
[8] J.-D. Choi, K.-J. Byun, B.-T. Jang, and C.-J. Hwang:
"A synchronization method for real time surround display using
clustered systems," Proceedings of the tenth ACM international
conference on Multimedia, Juan-les-Pins, France, pp.259-262,
2002.
[9] M. Czerwinski, G. Smith, T. Regan, B. Meyers, G.
Robertson, and G. Starkweather, "Toward characterizing the
productivity benefits of very large displays," In Human-
Computer Interaction, INTERACT 2003, vol., no., pp.9-16,
2003.
[10] T. A. DeFanti, G. Dawe, D. J. Sandin, J. P. Schulze, P.
Otto, J. Girado, F. Kuester, L. Smarr, and R. Rao: "The
StarCAVE, a third-generation CAVE and virtual reality
OptIPortal", Future Generation Computer Systems, vol.25, no.2,
pp.169-178, 2009.

[11] S. Eilemann, M. Makhinya, and R. Pajarola:
"Equalizer: A Scalable Parallel Rendering Framework",
Visualization and Computer Graphics, IEEE Transactions on,
vol.15, no.3, pp.436-452, 2009.
[12] J.-y. Huang, K. M. Wang, and K.-W. Hsu: "The frame
synchronization mechanism for the multi-rendering surrounding
display environment", Displays, vol.25, no.2-3, pp.89-98, 2004.
[13] G. Humphreys, I. Buck, M. Eldridge, and P.
Hanrahan: "Distributed rendering for scalable displays,"
Proceedings of the 2000 ACM/IEEE conference on
Supercomputing (CDROM), Dallas, Texas, United States, 2000.
[14] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M.
Everett, and P. Hanrahan: "WireGL: a scalable graphics system
for clusters," Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, 2001.
[15] G. Humphreys, M. Houston, R. Ng, R. Frank, S.
Ahern, P. D. Kirchner, and J. T. Klosowski: "Chromium: a
stream-processing framework for interactive rendering on
clusters," ACM SIGGRAPH ASIA 2008 courses, Singapore,
2008.
[16] B. Jeong, L. Renambot, R. Jagodic, R. Singh, J.
Aguilera, A. Johnson, and J. Leigh: "High-Performance
Dynamic Graphics Streaming for Scalable Adaptive Graphics
Environment," Supercomputing, 2006. SC '06. Proceedings of
the ACM/IEEE SC 2006 Conference, pp.24-24, 2006.
[17] A. Jeremie, G. Valerie, L. Guy, M. Emmanuel, and R.
Bruno: "SoftGenLock: active stereo and genlock for PC cluster,"
Proceedings of the workshop on Virtual environments 2003,
Zurich, Switzerland, pp.255-260, 2003.
[18] L. Lamport: "Time, clocks, and the ordering of events
in a distributed system", Communications of the ACM, vol.21,
no.7, pp.558-565, 1978.
[19] R. B. M. Bues, S. Stegmaier, U. Häfner, H. Hoffmann,
F. Haselberger, "Towards a Scalable High Performance
Application Platform for Immersive Virtual Environements," In
Proceedings of Immersive Projection Technology and Virtual
Environments, vol., no., pp.165-174, 2001.
[20] Nirnimesh, P. Harish, and P. J. Narayanan: "Garuda:
A Scalable Tiled Display Wall Using Commodity PCs",
Visualization and Computer Graphics, IEEE Transactions on,
vol.13, no.5, pp.864-877, 2007.
[21] Genlock,
http://www.nvidia.com/object/IO_10793.html
[22] Nvidia Quadro G-Sync,
http://www.nvidia.com/page/quadrofx_gsync.html
[23] Nvidia, Quadro FX 3000G Solutions for Advanced
Visualization. Technical Report. NVIDIA Corporation, 2003.
[24] B. Raffin, L. Soares, N. Tao, R. Ball, G. S. Schmidt,
M. A. Livingston, O. G. Staadt, and R. May, "PC Clusters for
Virtual Reality," In Virtual Reality Conference, vol., no.,
pp.215-222, 2006.
[25] A. Rrustemi. ‘Computing Surface - a platform for
scalable interactive displays’. Doctoral Thesis, University of
Cambridge, 2008.
[26] S. Rudrajit, Z. Jiannan, F. Thomas, L. Kai, and S.
Jaswinder Pal: "Load balancing for multi-projector rendering
systems," Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware, Los Angeles, California, United States, 1999.
[27] D. J. Sandin, T. Margolis, J. Ge, J. Girado, T. Peterka,
and T. A. DeFanti: "The Varrier™ autostereoscopic virtual

reality display," ACM SIGGRAPH 2005 Papers, Los Angeles,
California, 2005.
[28] B. Schaeffer: "Networking and Management
Frameworks for Cluster-Based Graphics," Virtual Environment
on a PC Cluster Workshop, Protvino, Russia, 2002.
[29] D. R. Schikore, R. A. Fischer, R. Frank, R. Gaunt, J.
Hobson, and B. Whitlock: "High-resolution multiprojector
display walls", Computer Graphics and Applications, IEEE,
vol.20, no.4, pp.38-44, 2000.
[30] L. Shupp, R. Ball, B. Yost, J. Booker, and C. North:
"Evaluation of viewport size and curvature of large, high-
resolution displays," Proceedings of Graphics Interface 2006,
Quebec, Canada, 2006.
[31] L. Smarr, M. Brown, and C. de Laat: "Special section:
OptIPlanet -- The OptIPuter global collaboratory", Future
Generation Computer Systems, vol.25, no.2, pp.109-113, 2009.
[32] D. S. Tan, D. Gergle, P. Scupelli, and R. Pausch:
"Physically large displays improve performance on spatial
tasks", ACM Trans. Comput.Hum. Interact, vol.13, no.1, pp.71-
99, 2006.
[33] G. Wallace, O. J. Anshus, P. Bi, H. Chen, Y. Chen, D.
Clark, P. Cook, A. Finkelstein, T. Funkhouser, G. Anoop, M.
Hibbs, K. Li, Z. Liu, S. Rudrajit, S. Rahul, and O. Troyanskaya:
"Tools and applications for large-scale display walls", Computer
Graphics and Applications, IEEE, vol.25, no.4, pp.24-33, 2005.
[34] D. D. Winter, P. Simoens, L. Deboosere, F. D. Turck,
J. Moreau, B. Dhoedt, and P. Demeester: "A hybrid thin-client
protocol for multimedia streaming and interactive gaming
applications," Proceedings of the 2006 international workshop
on Network and operating systems support for digital audio and
video, Newport, Rhode Island, 2006.
[35] C. Yuqun, C. Han, D. W. Clark, L. Zhiyan, G.
Wallace, and L. Kai, "Software environments for cluster-based
display systems," In Cluster Computing and the Grid, 2001.
Proceedings. First IEEE/ACM International Symposium on,
vol., no., pp.202-210, 2001.

The submitted manuscript has been created in part by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
("Argonne"). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government.

